Topic: 5. Serializing / Deserializing JSON Data (GET/POST)

Speaker: Personal | Notebook: API Development using Django Framework

To see more details about serializers, view this Youtube clip

1. To view the JSON file in a formatted style, we added the Google Chrome extension, JSON FORMATTER:

BEFORE:

€ G ® 127.0.0.1:8000/api/v1/students/
Pretty-print

[{"id":1,"student_id":"S001", "name": "Rosilie”, "branch”:"Computer Science"},{ 2,"student_id":"S@02", "name”:"Yuri®,"branch":"Engineering"},{"id":3, "student_id":"5@@3", “name":"Xeria", "branch": "Hotel Mgt"}]

AFTER:

< C @ 127.0.0.1:8000/api/v1/students/

Pretty-print

"id": 1,

"student id": "Ssee1",
"name"”: "Rosilie",

"branch": "Computer Science"

"id": 2,

"student id": "Ssee2",
"name™: “Yuri®,
"branch": "Engineering"

"id": 3,
"student_id": "see3™,
"name": "Xeria",
"branch": "Hotel Mgt™

https://youtu.be/L9ha9WUwTtc?si=_ZH9Tg-MpJXue5Ki
https://chromewebstore.google.com/detail/bcjindcccaagfpapjjmafapmmgkkhgoa?utm_source=item-share-cp

2. Previously, we manually used serializers to convert our query set into a list. The code is below to show the output in Step 1.

views.py api X

“ DJANGOREST_APIPROJECT
~ api

> _pycache

> migrations
_init__.py
admin.py
apps.py
models.py
tests
urls.py

Views.py .
studentsview(r

~ django_rest_main students = Stu

> _pycache__

_init__.py students list = 1i

asgi.py] turn Json
settings.py

EXPLORER

“~ DJANGOREST_APIPROJECT
v api

? _ pycache__

> migrations
_init__py
admin.py modél =
apps.py fields
models.py

serializers.

4. Update our API\VIEWS.PY:

FROM manual serialization:

DjangoREST_A

@ EXPLORER views.py api X
2

\/ DJANGOREST APIPROJECT api > ® views.py > 0 studentsView
v api
? _pycache__

? migrations
studentsView(request):

_init__py .
students = Student.objects.all()

admin.py

apps.py students list = list(students.values())
models.py return JsonResponse(students list,safe=
serializers.py

tests.py

urls.py

views.py

v django_rest_main

@ EXPLORER
]

“ DJANGOREST APIPROJECT views.py > @ studentsView
v api
> _pycache__

N from students.models import Student
> migrations - o - : :

U . SCr Tarircr S THpuUlc S Luuciic oo tar e ey

—Init_.py from rest framework.response import Response
admin.py from rest framework import status
apps.py from rest framework.decorators import api view

models.py
@api view(['GET'])
studentsview(request):
if request.method == 'GET':

serializers.py
tests.py
urls.py

VIEWS.pY students = Student.objects.all()
v django_rest_main
> _ pycache__ serializer = StudentSerializer(students,many=)

_init_py return Response(serializer.data, status=status.HTTP_20@ OK)

asgi.py

So, when you run the URL path again:

http://127.0. 0. 1: 8000/ api / v1/ st udent s/

& @ 127.0.0.1:8000/api/v1/students/

REST frame

£}

api_djangoadmin

Students

Students

GET /api/wvl/students

HTTP 280 OK

Allow: GET, OPTIONS
Content-Type: application/json
Vary: Accept

"id": 1

"student_id": "S@01"
"name”: "Rosilie”
"branch”: "Computer Science”™
"id": 2

"student_id": "S@02"
"name™: "Yuri"

"branch”: "Engineering”
"id": 3

"student_id": "S@93"
"name”: "Xeria"

"branch"”: "Hotel Mgt"

OPTIONS GET ~

5. Now, if you update your database model for a new record and use the GET button from Step 4, you will be able to use GET button to get the latest added

records or you can simply refresh your page and that will be considered as a GET method.

® 127.0.0.1:8000/api/v1/students/ 7 Q 7} = ’_

REST framework api_djangoadmin

Students

Students

GET /api/vl/students

HTTP 288 0K

| Allow: GET, OPTIONS
Content-Type: application/json
Vary: Accept

"id": 1

"student_id": "S@61"
"name”: "Rosilie”
"branch”: "Computer Science”
"id": 2

"student_id": "See2"
"name": "Yuri"

"branch™: "Engineering”
"id": 3

“student_id": "S863"
"name”: "Xeria"

"branch™: "Hotel Mgt"

“id": 4

"student_id": "See4"
"name": "Russell”
"branch™: "Veterinary"

6. Now using POSTMAN, you can copy the same API link paste it into the POSTMAN search bar and use GET method. It should return all records from the
database. Simply click on + and add the same path we used from the browser. To use POSTMAN, this must be installed in your device.

T PeTeT e " G how £ Setti + —

< c ® 127.0.0.1:8000/api/v1/students/ hxd Im} 5 @

Home Workspaces v APl Network Q search Postman e A @ Upgrade v -

2 My Workspace New Import Overview 0.0.1:8000/ap v = No environmen
Students
g r = W http://127.0.0.1:8000/api/v1/students/ [) save v | st
Collections
StUdentS GET v http://127.0.0.1:8000/api/v1/students/ m
En « My first collection
GET /api/vl/students D(g First folder inside collection Params Authorization Headers (6) Body Scripts Settings Co
Flows Query Params
HTTP 280 0K
CEED Gl AL D) Key Value Description ~ Bulk
Contant-Type: application/json = Second folder inside collection
N Histo
Vary: Accept
g7
’ . Cookies Headers (10) st Results €0 ms - 5928 &
I Create a collection for your Body Cookies Headers (10) Test Results Y 200 OK 11ms 5928 &
" id": " " requests " —_ -~
student_1d": 75001 q {}usoN v D> ¥ visualize ~ = Q
“name”: "Rosilie™ N
A collection lets you group related
“branch”: "Computer Science"” 1 [
requests and easily
2 i
authorization, t o
3
"id": 2 variables for all requests in it. 4 "sgE1”,
“student_id": "S002" 5 e
“REEE SIS Create Collection 6 "Computexr Science”
“branch”: "Engineering” 7 1
8 £
9
"id": 3 .
“student_id": "5083" _?
“name”: "Xeria" 1 :)
“branch”: "Hotel Mgt" 12 ngineering
13 ¥
14 i
“ige- 4 15
"student_id": "S004" 16
“name”: "Russell™ 17
“branch”: "Veterinary" 18
19 I
o E
ED @ Online Q Find and replace {9 Postbot Runner " StartProxy (Cookies (3 Vault I

7. To store data using the Django Rest Framework, update the VIEWS.PY to allow for POST method.

=]

EXPLORER ar views.py api X

* DJANGOREST_APIPROJECT a pi
“ api
> _pycache__
> migrations
_init__.py
admin.py
apps.py
models.py 9| (@api_view([®
studentsView(request):
if request.method == "GET':

serializers.py

urls.py
Py students

views.py
~ django_rest_main = e a *(students,many=)
> _pycache__ return Respo serializer.data, status=status.HTTP_200 0K)
init.py elit request.method == "POS
asgi.py . - -
serializer = StudentSerializer(data=request.data)
if serializer.is valid():
serializer.save()

settings.py

urls.py

wsgi.py return R (serializer.data, status=status.HTTP_2@1 CREATED)
> env

v students print(serializer.errors)

> _pycache_ turn Respo serializer.errors,status.HTTP_48@ BAD REQUEST)

> migrations

When you reload your page, then you can insert a new post:

v ik 12 St &Y Persc &Y Selec @ 127.0 & s x G how L Settir -~ — O

<« C ® 127.0.0.1:8000/api/v1/students/ Q. ™} 5 @

api_djangoadmin

Students

Students =T

GET /api/vl/students

HTTP 288 OK

Allow: POST, OPTIONS, GET
Content-Type: application/json
Vary: Accept

nid": 1
"student_id": "seei”,
"name": "Rosilie”,

"branch": "Computer Science"

nige. 2
"student_id": "seaz2",
"mame": "yuri®”,

"branch”: "Engineering"

"id": 3

"student_id": "seaz”,
"name": "Xeria"®,
"branch": "Hotel Mgt"

"id": 4

"student_id": "seeas”,
"name": "Russell",
"branch”: "veterinary"

Media type: application/json h

Content: {
"student_id": "S005",
"name": "Mary Ann”,
"branch™ "Engineering”

}

v ih 12 St &Y Persc &% Selec & 127.0 s x G how £ Setti + —

€« C ® 127.0.0.1:8000/api/v1/students/ Q ' S)

api_djangoadmin

Students

Students

POST /api/vl/students

HTTP 281 Created

Allow: POST, OPTIONS, GET
content-Type: application/json
vary: Accept

"id": s,

"student_id": "sees”
"mame": "Mary Ann",
"branch": "Engineering"

Media type: application/json A

Content:

POST

8. To use POSTMAN, add the path again. Select BODY, then RAW, then JSON. Add your records then select select the SEND method.

= <« > Home Workspaces v

o

~ My Workspace New

API Network

Import

Q) Search Postman

Upgrade — O

@n o @

&0 Overview

POST http://127.0.0.1:8000/a, ®

+ v &l Noenvironment

W) + | = e P hitp://127.0.0.1:8000/api/v1/students/ [3) save ~ Share
Collections
EJ POST ~ http://127.0.0.1:8000/api/v1/students/ ‘ end
Environments -
| [9 Yourcollecton & 4 ==
el Params Authorization Headers (8) Scripts Settings Cookies
o oG Your collection
o O none () form-data x—www-form—ur\encade[l awI) pinary () GraphQL | JSON ~ Beautify
Authorization ®
@ 1 {"student_id":"S@66", "name":"Ziggy", "branch”:"Business"}]
History Type Ammey
oo
o+
Create a collection for your
requests
A collection lets you group related Body Cookies Headers (10) TestResults D) 201 Created 18ms - 3918 - @ | oo
requests and easily set common
authorization, tests, scripts, and {} JSON v D> Preview {9 Visualize v = b Q &
variables for all requests iniit —
1 i
2 "id": 6,
Create Collection 3 “student_id": "SP06"
4 "name": "Ziggy",
5 "branch": "Business"
6
l¢
9. Now, to see the newly inserted record, use the GET method. You will then see the newly added record.
= ¢ - Home Workspaces v APl Network Q Ssearch Postman ;. Invite RSN CO) Upgrade ~ — [m]
2 My Workspace New Import G0 Overview GET http://127.0.01:8000/ap. ® v [Noenvironment v
) + | = e http://127.0.0.1:8000/api/v1/students/ [) save ~ Share
Collections
[E] GET v http://127.0.0.1:8000/api/v1/students/
|| Environments -
[9 Yourcollecton @ + oo
Params Authorization Headers (8) Body = Scripts Settings Cookies
=G Your collection
| Hows O none () form-data () x-www-form-urlencoded O raw (O binary () GraphQL JSON v Beautify
Authorization @
) 1 {"student_id":"sS@06","name":"Ziggy", "branch":"Business"}]
History TYPe APIKey
oo
o+
Create a collection for your
requests
A collection lets you group related Body Cookies Headers (10) TestResults D) 200 OK 6ms - 7328 - @ o
1 requests and easily set common
authorization, tests, scripts, and {} JSON ~ D> Preview {Q Visualize ~ S b Q &
variables for all requests in it. o S —
23 “name”: "Russell”,
Create Collection 24 "branch": "Veterinary"
| 25 i,
26 i
27 "id": 5,
i 28 "student_id": "sees",
29 "name": "Mary Ann",
| 30 "branch": "Engineering"
31 =
32 i
33 "id": 6,
34 "student_id": "Seos",
35 "name": "Ziggy",
36 "branch": "Business"
37
1 38]
ED @ Online Q Find and replace Console 9 Postbot 3] Runner o Start Proxy & Cookies () Vault [Trash E

Copyright © Personal Digital Notebooks | By Rosilie | Date Printed: Jan. 8, 2026, 10:41 p.m.

	Topic: 5. Serializing / Deserializing JSON Data (GET/POST)
	Speaker: Personal | Notebook: API Development using Django Framework

