Topic: 6. Single Record Fetching/Updating using PK (PUT/DELETE)

Speaker: | Notebook: API Development using Django Framework

@ EXPLORER
1

~ DJANGOREST_APIPROJECT api > urls

/O v api from django.urls i
> _pycache from . import v

> migrations
urlpatterns =

_init__py path('stude
admin.py path('s
apps.py

models.py

serializers.py

8- D& 0

EXPLORER urls.py viewspy api X

v DJANGOREST_APIPROJECT api >

~ api

ango REST framework
> _pycache__ @api view((['GET"]))
> migrations studentDetailView(request, pk):
try:
student = Student.objects.get(pk=pk)

Students | Student Detail

_init_py

c adminoy
Student Detall sdminpy :
apps-py rn 5 5 tus.HTTP 404 NOT FOUND)
mode

GET /api/vl/students/1,
if request.method == 'G

AT 260 oK e serializer = Stu izer(student)
Allow: GET, OPTIONS e ~ -
Content-Type: application/json .data, status=status.HTTP_ 260 OK)
vary: Accept

3. Using the POSTMAN, add the part and the primary key to retrieve that specific record. Click SEND:

= < Home Workspaces ~ APl Network Q) Search Postman & 0 (o) Upgrade v —

o

,"—'\ My Workspace New Import Overview GET http://127.0.0.1:8000/ap ® T ~ N Mo environment
W) T = oee W http://127.0.0.1:8000/api/v1/students/1 [@) Save ~ Share
Collections

E GET ~ http://127.0.0.1:8000/api/v1/students/1 m
Environments N

Your collecton

Params Authorization Headers (8) Body e Scripts Settings Cookii
oG Your collection
(RS none form-data x-www-form-urlencoded O raw binary GraphQL JSON Beautif
Authorization ®
- 1 {"student_id":"sees","name":"Ziggy", "branch":"Business"}
History
oo
O+

Create a collection for your
requests

gicoloctionlistvOlldiotplieated Body Cookies Headers (10) TestResults) 200 OK 12ms - 3908 @ -
requests and easily set common
authorization, tests, scripts, and {} JSON ~ [> Preview @ Visualize = [—D Q ¢

variables for all requests in it.

(S

Create Collection “student_id": "see1l”,

3

4 “name": "Rosilie”,

5 : "Computer Science"
-

In case, you search for the record that doesn't exist, the 404 error message should display:

< C ® 127.0.0.1:8000/api/v1/students/50/ a O] ™} = &

api_djangoadmin

Students | Student Detai

Student Detall

GET /api/vl/students/sa8

HTTP 484 Not Found
Allow: GET, OPTIONS
content-Type: application/jsor
Vary: Accept

4. In POSTMAN (we changed the theme), if you have a non-existing record:

= = Home Workspaces v APl Network S n 2+ Invite

2. My Workspace New Import Overview GET http://127.0.0.1:8000/ap

g t “* [http://127.0.0.1:8000/api/v1/students/50

Collections

GET http://127.0.0.1:8000/api/v1/students/50

Body

Value Description Bulk Edit

Create a collection for your
requests

Create Collection 404 Not Found

5. To update a specific record, we update the VIEWS.PY. We use the PUT method.

@ EXPLORER urls.py urls.py views.py api X
1
“~ DJANGOREST_APIPROJECT apl >
~ api
> _pycache_ 27 | |(@api view((['GET', 'PUT']))
> migrations studentDetallView(request, pk):
try:
student = Student.objects.get(pk=pk)
Student .DoesNotExist:
e(status=status.HTTP_484 NOT_FOUND)

_init__py
admin.py
apps.py
models.py

serializers.py

tests.py if request.method == "GET':
urls.py serializer = StudentSerializer(student)
return Respc serializer.data, status=status.HTTP_ 208 OK)

views.py
v django_rest_main

> —pycache_ elif request.method == "PUT":

—init__.py serializer = Stu ializer(student, data=request.data)
asgi.py if serializer.is valid():

settings.p) serializer.save()

urls.py return Re c(serializer.data, status=status.HTTP 200 0K)
wsgi.py

S turn Response(serializer.errors,status.HTTP_40@ BAD REQUEST)
env

v students

> _pycache__

Updating the record:

W el L SETTINAS

v ok 14 @ P s @ x G he &S @Pc Gic + — O

C @ 127.0.0.1:8000/api/v1/students/2/

api_djangoadmin

Students | Student Detail

Student Detall

GET /Japi/vl/students/2

HTTP 288 0K
Allow: GET, PUT, OPTIONS
content-Type: application/json

vary: Accept
"id=: 2,
"student_id": "seaz"
"name”: "yuri®”
"branch": "Engineering"
Media type: application/json bl
Content: {

"student_id": "S002",
"name"; "Yuri",
"branch”™: "Aviation”

©
©®

PUT

6. Using the POSTMAN , use the PUT method with the primary record number:

= < Home Workspaces v

>, My Workspace New Import
g

ollections

vironments ~ My first collection

First folder inside collection

Second folder inside collection

Create a collection for your
requests

A collection lets you group related

requests and set common

authorization, and

variables for all requests in it

Create Collection

EXPLORER

3

v DJANGOREST_APIPROJECT
~ api
> _ pycache__
> migrations
_init__py
admin.py
apps.py
models.py
serializers.py
tests.py
urls.pv
views.nv
~ django_rest_main
> _pycache__
_init__py
asgi.py
settings.py
urls.py
wsgi.py
> env
~ students
> _pycache__
> migrations
_init__py
admin.py
apps.py
models.py
tests.py

API Network

Q Search Postman

S d
£ Invite 0 Q@

Untitled Request t ~

Upgrade v

Untitled Request

Pu hitp://127.0.01:8000/ap ®

) save v

i http://127.0.0.1:8000/api/v1/students/1/

PUT v http://127.0.0.1:8000/apifv1/students/1/ Send

Arams.. Authorizatinn. Haadsrs (8) Ry Serints. Gattings

none () form-data () x-www-form-urlencoded ® raw () binary () GraphQL

1 {"student_id":"S006","name":"Ziggy|,"branch”:"E ng"t

Body Cookies Headers (10) Test Results D 67ms - 3888

{} Json v {9 visualize =

[> Preview
"id": 1,
“student

"name" :
"branch”

8 08

DjangoREST_APIProject

views.py api X serializers.py
views.py > @ studentDetailView
.............. - e ey

return Response(serializer.errors,status.HTTP_400 BAD REQUEST)

api »

@api view((["GET','PUT', 'DELETE"]))
studentDetallView(request, pk):
try:
student = Student.objects.get(pk=pk)
except Student.DoesMotExist:
return Response(status=status.HTTP_4@4 NOT_ FOUND)

if request.method == "GET':
serializer = StudentSerializer(student)
return Response(serializer.data, status=status.HTTP_200 OK)

elif request.method == 'PUT":
serializer = StudentSerializer(student, data=request.data)
if serializer.is valid():
serializer.save()
return Response(serializer.data, status=status.HTTP 200 OK)
H

return Response(serializer.errors,status.HTTP_48@_BAD_REQUEST)

el

elif request.method == 'DELETE":
student.delete()
return Response(status=status.HTTP_ 284 NO CONTENT)

[N No environment

& C ® 127.0.0.1:8000/api/v1/students/ aQ <} S5 @

api_djangoadmin

"id": 1

"student_id": "seei”,
"name"”: "Rosilie”
"branch": "Computer Science"
"id": 2

"student_id": "seez",
"name": "yuri®,
"branch”: "Awviation"
"id": 3

"student_id": "seaz",
"name": “"Xeria",

"branch”: "Hotel mMgt"

"id": 4

"student_id": "se@e4”,

"name"”: "Russell”

"branch": "veterinary"

"id": 5

"student_id": "seas",

"name": “"Mary Ann”

"branch”: "Engineering"

"id": &

"student_id": "seas",

"name": "ziggy",

"branch”: "Business”

Media type: application/json bl

Content: {

"student_id™ "S008",
"name”: "Some Strangers”,
“branch™ "N/A"

©
)

POST

When you reload your page, you will see the DELETE button:

<« c ® 127.0.0.1:8000/api/v1/students/7/

api_djangoadmin

Students / Student Detail

Student Detail

GET /api/v1/students/7

HTTP 268 OK

Allow: GET, OPTIOWS, PUT, DELETE
content-Type: application/json
Vary: Accept

g 7
“student_id": "sees”
“name”

ome Strangers”
“branch”: "H/A"

Media type: application/json

Content:

8. Now, reload your page and locate that deleted record, it should return HTTP error message

® 127.00.1 :8000/api/v1/students/7/

api_djangoadmin

Students | Student Detail

Student Detall

DELETE /api/v1/students/7

HTTP 284 No Content

Allow: GET, OPTIONS, PUT, DELETE
content-Type: application/json
vary: accept

Media type: application/json

Content:

9. Using the POSTMAN, use the delete the method. Assume you have added several records. Delete these unnecessary records.

Home Workspaces v APl Network Q search Postman e Q Upgrade v

2 My Workspace New Import GET hitp://127.0.0:1:8000/api ® Untitled Request Untitled Request i X No environment

g T B hitp://127.0.0.1:8000/apijv1/students/ 7) Save v | Share
Collections

GET http://127.0.0.1:8000/api/v1/students/

v My first collection

First foldar inside colection Params Authorization Headers (6) y & Settings
Query Params

epp— Key Description

Create a collection for your
requests

A collecti you group related

requests and easily set common

authorization, tests, scripts

variables for all requests in it

Body kies H 200 OK 10 ms

Create Collection
{} JSON v

"branch":

*id": s,
“student_id":
“name": "M
“branch”

*id": 6,
“student_id":
"name"” :
“branch”:

*id": 8,
“student_id"
"name"” :
“branch”

Home Workspaces v APl Network Q search Postman g 0 9 Upgrade v

New Import oeL http://127.0.01:8000/api & Untitled Request Untitled Request + [N No environment

=} t hitp://127.0.0.1:8000/api/v1/students/8/ %) Save Share
Collections

DELETE v http://127.0.0.1:8000/api/v1/students/8/
v My first eollection

First folder inside collection Params Authorization Headers (6) Settings
Query Params

Key Description e Bulk Edit

Second folder inside collection

Create a collection for your
requests
A collection lets you group related
requests and easily set common
authorization, tests, scripts, a
variables for all requests in it.
Create Collection Headers (9) Test Result:) 204 No Content

Raw v D Preview ¢ Visualize v

1

Copyright © Personal Digital Notebooks | By Rosilie | Date Printed: Feb. 17, 2026, 3:16 a.m.

	Topic: 6. Single Record Fetching/Updating using PK (PUT/DELETE)
	Speaker: | Notebook: API Development using Django Framework

