Topic: 6. Single Record Fetching/Updating using PK (PUT/DELETE)

Speaker: | Notebook: API Development using Django Framework

@ EXPLORER
1

~ DJANGOREST_APIPROJECT api > urls

/O v api from django.urls i
> _pycache from . import v

> migrations
urlpatterns =

_init__py path( 'stude
admin.py path('s
apps.py

models.py

serializers.py

8- D& 0

EXPLORER urls.py viewspy api X

v DJANGOREST_APIPROJECT api >

~ api

ango REST framework
> _pycache__ @api view(([ 'GET"]))
> migrations studentDetailView(request, pk):
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3. Using the POSTMAN, add the part and the primary key to retrieve that specific record. Click SEND:
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In case, you search for the record that doesn't exist, the 404 error message should display:
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GET /api/vl/students/sa8

HTTP 484 Not Found
Allow: GET, OPTIONS
content-Type: application/jsor
Vary: Accept

4. In POSTMAN (we changed the theme), if you have a non-existing record:
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5. To update a specific record, we update the VIEWS.PY. We use the PUT method.
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> _pycache_ 27 | |(@api view((['GET', 'PUT']))
> migrations studentDetallView(request, pk):
try:
student = Student.objects.get(pk=pk)
Student .DoesNotExist:
e(status=status.HTTP_484 NOT_FOUND)

_init__py
admin.py
apps.py
models.py

serializers.py

tests.py if request.method == "GET':
urls.py serializer = StudentSerializer(student)
return Respc serializer.data, status=status.HTTP_ 208 OK)

views.py
v django_rest_main

> —pycache_ elif request.method == "PUT":

—init__.py serializer = Stu ializer(student, data=request.data)
asgi.py if serializer.is valid():

settings.p) serializer.save()

urls.py return Re c(serializer.data, status=status.HTTP 200 0K)
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S turn Response(serializer.errors,status.HTTP_40@ BAD REQUEST)
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Updating the record:
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Students | Student Detail

Student Detall

GET /Japi/vl/students/2

HTTP 288 0K
Allow: GET, PUT, OPTIONS
content-Type: application/json

vary: Accept
"id=: 2,
"student_id": "seaz"
"name”: "yuri®”
"branch": "Engineering"
Media type: application/json bl
Content: {

"student_id": "S002",
"name"; "Yuri",
"branch”™: "Aviation”
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6. Using the POSTMAN , use the PUT method with the primary record number:
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> _pycache__
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settings.py
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> env
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> _pycache__
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views.py api X serializers.py
views.py > @ studentDetailView
.............. - e ey

return Response(serializer.errors,status.HTTP_400 BAD REQUEST)

api »

@api view(([ "GET','PUT', 'DELETE"]))
studentDetallView(request, pk):
try:
student = Student.objects.get(pk=pk)
except Student.DoesMotExist:
return Response(status=status.HTTP_4@4 NOT_ FOUND)

if request.method == "GET':
serializer = StudentSerializer(student)
return Response(serializer.data, status=status.HTTP_200 OK)

elif request.method == 'PUT":
serializer = StudentSerializer(student, data=request.data)
if serializer.is valid():
serializer.save()
return Response(serializer.data, status=status.HTTP 200 OK)
H

return Response(serializer.errors,status.HTTP_48@_BAD_REQUEST)
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elif request.method == 'DELETE":
student.delete()
return Response(status=status.HTTP_ 284 NO CONTENT)

[N No environment
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"id": 1

"student_id": "seei”,
"name"”: "Rosilie”
"branch": "Computer Science"
"id": 2

"student_id": "seez",
"name": "yuri®,
"branch”: "Awviation"
"id": 3

"student_id": "seaz",
"name": “"Xeria",

"branch”: "Hotel mMgt"

"id": 4

"student_id": "se@e4”,

"name"”: "Russell”

"branch": "veterinary"

"id": 5

"student_id": "seas",

"name": “"Mary Ann”

"branch”: "Engineering"

"id": &

"student_id": "seas",

"name": "ziggy",

"branch”: "Business”

Media type: application/json bl

Content: {

"student_id™ "S008",
"name”: "Some Strangers”,
“branch™ "N/A"
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When you reload your page, you will see the DELETE button:



<« c ® 127.0.0.1:8000/api/v1/students/7/

api_djangoadmin

Students / Student Detail

Student Detail

GET /api/v1/students/7

HTTP 268 OK

Allow: GET, OPTIOWS, PUT, DELETE
content-Type: application/json
Vary: Accept

g 7
“student_id": "sees”
“name”

ome Strangers”
“branch”: "H/A"

Media type: application/json

Content:

8. Now, reload your page and locate that deleted record, it should return HTTP error message

® 127.00.1 :8000/api/v1/students/7/
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Students | Student Detail

Student Detall

DELETE /api/v1/students/7

HTTP 284 No Content

Allow: GET, OPTIONS, PUT, DELETE
content-Type: application/json
vary: accept

Media type: application/json

Content:

9. Using the POSTMAN, use the delete the method. Assume you have added several records. Delete these unnecessary records.
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