Topic: 9. CRUD Operations using Mixins

Speaker: Personal | Notebook: API Development using Django Framework

Mixins are a way to allow the reusability of methods. In object-oriented programming, mixin is a class with methods from other classes.

With mixins, we can reuse certain CRUD operations. These are the following:

LI STMODELM XI N - nethod used is list()

CREATMODELM XI N - nethod used is create()

RETRI EVEMODELM XIN - - nethod used is retrieve()

UPDATEMODELM XI' N - net hod used is update()

DESTROYMODELM XI' N - net hod used is destroy()

These are used with GenericAPIView. See the documentation here.

1. To view all the records of Employees using Mixins, we update the API\VIEWS.PY and comment out the classes EMPLOYEE AND EMPLOYEE DETAIL.

2. Import the needed library.

@ EXPLORER

~ DJANGOREST_APIPROJECT ap
“ api
> __pycache__
> migrations
_init__.py
admin.py
apps-py

models

serializers.py

tests.py
urls.py
views.py
v django_rest_main

> _pycache__

3. Create the new classes and test the URL.

https://www.django-rest-framework.org/api-guide/generic-views/#generic-views

ORER

~ DJANGOREST_APIPROJECT

~ api

cache__ Emp 1 ListMo 1s.C lodelM { ic ericAPIView):
» migrations gueryset = Employee.objects.all()
init.py serializer class = Emplo iali

admin.py
' get (self, reguest):

appspy ~n self.list(request)

models.py

serializers.py post(self, request):
tests.py "n self.create(request)
urls.py

views.py

~ django_rest_main

4. Testing the URL: htt p: //127. 0. 0. 1: 8000/ api / v1/ enpl oyees/

This will result to having a form where we can input employee details and when submitted, this will be added to our Employee model.

® 127.001 :8000/api/v1/employees/

api_djangoadmin

Employees

Employees =1

GET /api/vl/employees

HTTP 200 OK
Allow: GET, POST,
Content-Type: applica
vary: accept

ilie Lim"
“software Developer”

"ENPEER"
"emp_name" lane
n": "Web Designer"

Raw data HTML form

Emp id

Emp name

Designation

5. For single - record Read/Update/Delete operations, we update our APNAPPS.PY as :

c | 0] 127‘0.0.16000/api/v1/emp\oyees/Z/| aQ) l @ EXPLORER oy u views.py api X

v DJANGOREST_APIPROJECT
Django REST

api_djangoadmin

Employees | Employee Detall

Employee Detail

get(self, request):
return self.list(request)

HTTP 200 0K
Allow: GET,
Content-Type:
vary: Accept " post(self, request):

irn self.create(request)

Views.py

v django_rest_main

get(self, request, pk):
irn self.retrieve(request, pk)

LORER . / views.py api X

’ DJANGOREST_APIPROJECT
v api
> _pycache_ post(self, request):
> migrations turn self.create(request)
_init__py
admin.py xin, mixins.Update 1Mixin,
apps.py
models.p

serializers.py

get(self, request, pk):
return self.retrieve(request, pk)

views.py
~ django_rest_main
put(self, request, pk):

> _pycache
=R turn self.update(request, pk)

__init__.py

To test:

C ® 127.0.0.1:8000/api/v1/emplo Q v 5} =

api_djangoadmin

Employees ' Employee Detail

Employee Detall

GET /Japi/vl/employees/2

HTTPF @8 0K
Allow: GET, PUT, HEAD, OPTIONS
Content-Type: applicaticn/json
vary: Accept

"id": 2,

"emp_id": "EMP222",
"emp_nama": "Jane Doe",
"designation": "wWeb Designer”

Raw data HTML form

Emp id EMPO02
Emp name Janet Doe
Designation Web Designer

PUT

This will update the record to:

C ® 127.0.0.1:8000/api/v1/employees/2/ O * ¢ 5} =4

api_djangoadmin

Employees ' Employee Detail

Employee Detall

PUT /fapi/vl/employees/2

HTTP 208 0K
Allow: GET, PUT, HEAD, OPTIONS
Content-Type: applicaticn/json

vary: Accept

"id": 2,

"emp_id": "EMPaE2",

"emp_name”: "Janet Doe",

"designation": "web Designer"

Raw data HTML form
Emp id EMP002
Emp name Janet Doa
Designation Web Designer

PUT

7. To delete a specific record.

@ EXPLORER
1
“ DJANGOREST APIPROJECT api > i > ‘B8 Emple
v api

> _pycache Emp. (mixins.ListModelMixin,m

queryset = Emp objects.all()
serializer class rializ

migrations

admir

apps.py

get(self, request):
self.list(request)

mode

urls.py post(self, request):

Views. return self.create(request)
v django_rest_main

Emplo etail(mixins
queryset = Emp objects.all()
serializer_clas) riali

> _pycache__

get(self, request, pk):
return self.retrieve(request, pk)

put(self, request, pk):
i self.update(request, pk)

delete(self, request, pk):
self.destroy(request

8. To test and delete record 2,

C ® 127.0.0.1:8000/api/v1/employees/2/ ORI + ¢ 3 = @

api_djangoadmin

Employees ' Employee Detail

Employee Detail o -

GET Japi/vl/employees/2

HTTP 288 0K
allow: GET, PUT, DELETE, HEAD, OPFTIONS
Content-Type: application/json

vary: accept
"id": 2,
"emp_1d": "EMP@82",
"emp_name": "lanet Doe",
"designation": "wWeb Designer"
Raw data HTML form
Emp id EMPO002
Emp name Janet Doe
Designation Web Designer

PUT

® 127.0.0.1:8000/api/v1/employees/2/ ¥

api_djangoadmin

Employees | Employee Detail

Employee Detail

GET /fapi/vil/employees/2

HTTP 484 Not Found

Allow: GET, PUT, DELETE, HEAD, OPTIONS
Content-Type: application/json

vary: Accept

"detail": "No Employee matches the given query.”

Raw data HTML form

Emp id

Emp name

Designation

PUT

Copyright © Personal Digital Notebooks | By Rosilie | Date Printed: Feb. 17, 2026, 3:19 a.m.

	Topic: 9. CRUD Operations using Mixins
	Speaker: Personal | Notebook: API Development using Django Framework

